
1. Introduction
Ozone (O3) at the surface is detrimental to human health, crop yields, and ecosystems (Cooper et al., 2014; 
Fowler et al., 2009; Mills et al., 2018; Monks et al., 2015; Silva et al., 2013; Zhang et al., 2018). Tropospheric 
ozone is recognized as the third most important contributor to the positive radiative forcing, based on its 
increases since 1750, following carbon dioxide (CO2) and methane (CH4; Myhre et al., 2013). Ozone is a sec-
ondary air pollutant, which is not emitted directly, but is produced through chemical reactions of precursor 
gases in the atmosphere, such as nitrogen oxides (NOx), carbon monoxide (CO), methane, and non-methane 
volatile organic compounds (NMVOCs). Ozone precursors are mainly emitted by human activities, such 
as fossil fuel combustion, residential burning, oil and gas production, agriculture, and biomass burning. 
Observations from aircraft, ozonesondes, and different satellites show that the tropospheric ozone burden 
has been increasing in the second half of the 20th century (Gaudel et al., 2018; Hemispheric Transport of 
Air Pollution [HTAP], 2010). Both satellite ozone measurements and global chemical transport models have 
found that the largest ozone burden increases—about +6 to +7 Dobson units (i.e., ∼15%–20% of average 
background ozone) from 1980 to 2016—are over India, Southeast Asia, and East Asia (Ziemke et al., 2019).

Previous studies have demonstrated that methane emissions affect global ozone with little dependence 
on the location of emissions (Fiore et al., 2008). For short-lived ozone precursors, the global tropospheric 
ozone burden (BO3) responds differently to emission changes from different world regions, with generally 

Abstract We investigate the contributions of emission changes from 10 world regions, as well as 
the global methane concentration change, on the global tropospheric ozone burden change from 1980 to 
2010. The modeled global tropospheric ozone burden has increased by 28.1 Tg, with 26.7% (7.5 Tg) of this 
change attributed to the global methane increase. Southeast Asia (5.6 Tg) and South Asia (4.0) contribute 
comparably to the global ozone burden change as East Asia (5.6), even though NOx emission increases 
in each region are less than one-third of those in East Asia, highlighting the greater sensitivity of global 
ozone to these regions. Emission decreases from North America, Europe, and Former Soviet Union have 
led to ozone burden decreases of 2.8, 1.0, and 0.3 Tg. The greater sensitivity of the global ozone burden to 
emission changes in tropical and subtropical regions emphasizes the importance of controlling emissions 
in these regions for global ozone.

Plain Language Summary The global tropospheric ozone burden is highly sensitive to 
emission changes in tropical and subtropical regions, due to high temperature, strong sunlight, and 
convection which are favorable for ozone production and accumulation. Through model sensitivity 
simulations, we show that emission increases in Southeast Asia, South Asia, and East Asia contribute over 
half of the global tropospheric ozone burden increase from 1980 to 2010. Southeast Asia and South Asia 
contribute about as much to the ozone increase as East Asia, even though emission increases were much 
smaller from these regions, showing the high ozone sensitivity in these regions.
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much greater sensitivity to emissions in tropical and subtropical regions (Fry et al., 2012, 2013, 2014; Naik 
et al., 2005; West et al., 2009a). Since about 1980, global anthropogenic emissions of ozone precursors have 
been shifting toward the equator, particularly decreasing in North America and Europe, and increasing in 
East and South Asia (Duncan et al., 2016; Granier et al., 2011; Lamarque et al., 2010; Richter et al., 2005; 
Xing et al., 2013). In our previous study (Zhang et al., 2016), we investigated for the first time the influences 
of changes in the spatial distribution of global anthropogenic emissions of short-lived ozone precursors, the 
magnitude of these emissions, and the global atmospheric methane concentration on the global BO3 change 
from 1980 to 2010. We found that the spatial distribution change of emissions is most important for the 
increase in BO3, slightly exceeding the combined influences of the increased emission magnitude and global 
methane (Zhang et al., 2016). We also found that BO3 has increased most strongly over Southeast, East, and 
South Asia, a conclusion that was supported by satellite and ozonesonde observations. Based on previous 
studies that found a much greater sensitivity of BO3 to emissions in tropical and subtropical regions and 
especially Southeast Asia, we hypothesized that emission increases from these regions were particularly im-
portant for the global BO3 increase, because of the strong sunlight, high temperature, and strong convection 
(Gupta et al., 1998; Lawrence et al., 2003; West et al., 2009a). However, the effects of emission changes over 
recent decades from individual world regions on the global BO3 has not been previously quantified.

Here we build on our previous study (Zhang et  al.,  2016) by investigating how emission changes from 
different world regions, as well as the global methane concentration changes, have contributed to global 
BO3 changes (ΔBO3) from 1980 to 2010. We are particularly interested in quantifying the contributions of 
emissions from tropical and subtropical regions including Southeast Asia, South Asia, and Central and 
South America, as models and observations now suggest that tropospheric ozone is increasing fastest over 
these regions (Gaudel et  al.,  2018, 2020). We also calculate BO3 changes from multimodel experiments 
from the second phase of the Task Force on Hemispheric Transport of Air Pollutants (HTAP2; Galmarini 
et al., 2017), which have not been reported previously, to investigate the sensitivity of BO3 to emissions from 
different world regions.

2. Methods
The global chemistry-climate model CAM-chem is used in this study, which is based on the global Com-
munity Atmosphere Model (CAM) version 4, the atmospheric component of the Community Earth System 
Model (v1.2.2; Lamarque et al., 2012; Tilmes et al., 2015, 2016). Model simulations are constructed to be 
consistent with those in our previous study (Zhang et al., 2016). The model uses a horizontal grid with a res-
olution of 2.5° × 1.9° (longitude × latitude), and 56 vertical levels between the surface and 4 hPa (≈40 km) 
with a time step of 1800 s. The NASA Global Modeling and Assimilation Office GEOS-5 meteorology from 
2008 to 2012 is used to drive the model as a chemical transport model, such that meteorological inputs for 
all simulations are identical. For all simulations, the first year is spin-up and results are presented as 4-year 
averages. By using consistent meteorology among all the simulations, we focus on the effects of changes 
in anthropogenic emissions on BO3, and ignore other influences, such as possible influences of climate 
change. Our previous study showed that the interannual variability in ozone burden due to meteorological 
changes over the 4 years modeled is small compared with the overall ozone burden change (Table S2; Zhang 
et al., 2016). Monthly mean distributions of chemically active stratospheric species (such as O3, NO, NO2, 
and N2O5) are prescribed using the climatology from the Whole Atmospheric Community Climate Model 
simulations (Garcia et al., 2007; Lamarque et al., 2012). Global anthropogenic emissions of all short-lived 
species including ozone precursors, aerosols, and aerosol precursors, from all anthropogenic sectors includ-
ing biomass burning, ships and aircraft, are from ACCMIP for 1980 (Lamarque et al., 2010) and RCP8.5 
for 2010 (Riahi et al., 2011), which are compatible with one another. Monthly temporal variations for the 
anthropogenic air pollutant emissions are added by using monthly emission factors from RETRO (Schultz 
et al., 2008) and the NMVOCs are respeciated into CAM-chem chemical species following previous meth-
ods (Fry et al., 2014; Silva et al., 2016). All natural emissions, such as biogenic, lightning NOx, volcano, soil 
NOx, and ocean emissions used the same configuration as in our previous study (Lamarque et al., 2012; 
Zhang et al., 2016), and are constant across all simulations. Natural biogenic and lightning NOx emissions 
are calculated online as functions of meteorology and other factors, and therefore represent emissions from 
2009 to 2012 (MEGAN2.1 for biogenic, Guenther et al., 2012, and Price parameterization for lightning NOx, 
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Price & Rind, 1992; Price et al., 1997). Other natural emissions (volcano, ocean, and soil) were created as an 
average over recent decades, not considering yearly variability, following Lamarque et al. (2010).

We use three base simulations from our previous study (Zhang et al., 2016), the first two of which have 
global anthropogenic emissions and methane concentrations for 1980 (S_1980) and 2010 (S_2010), and a 
third in which CH4 concentration is set to the 1980 level and all other parameters stay the same as S_2010 
(named S_CH4). The global CH4 concentration is set globally uniform to 1,798 ppbv in 2010 (S_2010), and 
1,567 ppbv in 1980 (S_1980 and S_CH4; see Table 1 in Zhang et al., 2016). In this study, we conduct another 
10 sensitivity simulations; for each of these, we replace the anthropogenic emissions of all air pollutants in 
2010 with their emissions in 1980, for 10 world regions individually, holding all other regions and the global 
CH4 concentration at the 2010 levels (Table S1). The differences between S_2010 and the 10 sensitivity runs 
(S_2010—sensitivity) are the ΔBO3 from that region's emission changes from 1980 to 2010. BO3 is defined as 
the total ozone mass below the chemical tropopause of annual average of 150 ppbv ozone for each grid cell 
in the S_2010 simulation, with the same tropopause applied to all other simulations. Large uncertainties ex-
ist for the global BO3 calculations due to different definitions of the tropopause (Gaudel et al., 2018; Griffiths 
et al., 2020; Young et al., 2018), and the calculated BO3 in 2010 in our study is well within the range derived 
from multimodel mean and multi-satellite products (see the model evaluation section).

The 10 world regions follow the definitions introduced by HTAP2, except that we reduce the 13 land regions 
from HTAP2 to 10 regions here, grouping Northern Africa and Sub-Saharan together as a new region Africa 
(AFR), grouping Mexico and Central America and South America to give Central South America (CSA), 
and grouping Russia, and Belarus, Ukraine and Central Asia to give the Former Soviet Union (FSU). The 
other seven regions include North America (NAM), Europe (EUR), South Asia (SAS), East Asia (EAS), 
South East Asia (SEA), Pacific, Australia and New Zealand (PAN), and the Middle East (MDE; Figure S1). 
Since in HTAP2 definitions the region classification number for each grid cell is defined by the largest area 
fraction contributed by individual regions (Janssens-Maenhout et  al.,  2015), we found that when these 
region definitions are applied to ACCMIP and RCP8.5 emissions, some coastal cells with emissions were 
treated as ocean. To ensure we account for the relevant emissions from each region, we extend the 10 land 
mass regions outward into the oceans by two grid cells at 0.5° × 0.5° horizontal resolution. By doing this, 
the inland region emissions increase by 2%–30% depending on the region and pollutant, compared with the 
case when we do not include the two extra cells (Tables S2–S4).

To evaluate model performance in simulating the surface, vertical and long-term ozone trends from 1980 
to 2010, we thoroughly compared the model results in S_1980 and S_2010 with long-term surface observa-
tions, ozonesonde, aircraft, and satellites in our previous work (Zhang et al., 2016). Compared with surface 
ozone observations, S_2010 overestimates ozone by 5.8 ppbv averaged over all stations in the United States 
(average from 2009 to 2012 from the US CASTNET network), and 0.7 ppbv over Europe (average from 2009 
to 2011 from the EMEP network), but captures the seasonal cycles very well. Our model also captures very 
well the vertical distribution of ozone from ozonesondes, although it is biased high between 30°S and 30°N, 
particularly in the upper troposphere. The BO3 in 2010 (342.7 ± 4.5 Tg/yr) simulated by CAM-Chem is in 
the range of multimodel simulations (ACCENT: 336 ± 27 Tg; ACCMIP: 337 ± 23 Tg; TOAR: 340 ± 34 Tg, 
and CMIP6: 348 ± 15 Tg; Griffiths et al., 2020; Young et al., 2013, 2018), and is also comparable with satellite 
observations (Ziemke et al., 2011, 2019). The estimated net increase of BO3 of about 28 Tg from 1980 to 2010 
is also consistent with OMI/MLS satellite retrievals between October 2004 and December 2016, which indi-
cate a 21.8 Tg increase in tropospheric ozone over 60°S-60°N (Blunden & Arndt, 2017). Zhang et al. (2016) 
evaluated the modeled 1980–2010 ozone trend at six rural or remote sites globally, showing that the model 
captures the trend well at five these sites (Figure S19 in Zhang et al., 2016). We also evaluated the modeled 
ozone trends by comparing the In-Service Aircraft for a Global Observing System (IAGOS) commercial 
aircraft and SHADOZ ozonesondes in South, East, and Southeast Asia, and found that the ozone changes 
from 1994–2004 to 2005–2014 from these observations are similar to the modeled 1980 to 2010 changes 
(Figures S13–S15 and Table 4 in Zhang et al., 2016). We update this evaluation by comparing with updated 
IAGOS trends from more than 34,600 measured ozone profiles between 1994 and 2016, which showed sta-
tistically significant increases in observed tropospheric ozone above 11 regions of the Northern Hemisphere 
(NH) since the mid-1990s (Gaudel et al., 2020). The model captures well the ozone increases over these 11 
regions and the latitudinal gradient of these increases (maximum increases near the equator), though the 
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model underestimates the increasing trends in the lower troposphere, particularly over India, Malaysia, 
North China and Korea, and Southeast Asia. We also evaluated the ozone burden trend simulated in our 
model with ozone burden changes from 1979 to 2016 observed from the composite record of using TOMS/
OMI/MLS/OMPS satellite measurements, and our model captures the spatial distribution and magnitude 
changes very well between 25°S and 25°N (Figure 7a in Ziemke et al., 2019, and Figure S6).

3. Results
3.1. Regional Emission Changes

From 1980 to 2010, EAS had by far the largest NOx emissions increase (16.6 Tg), triple the emissions in 1980, 
mainly from industry and transportation, as well as the largest increase in VOCs emissions (Figure 1 for 
absolute changes in Tg; Figures S2 and S3 for relative changes in %). The largest increases in CO emissions 
occurred in AFR (49.9 Tg, 22% higher than 1980; Figure S2), EAS (47.0 Tg, 40%), and SAS (45.9 Tg, 70%), 
due to residential biomass burning and industrial emissions (Hoesly et al., 2018). SAS and SEA, with more 
than 50% of the increases from biomass burning, see Figure S4) also have large emission increases for these 
pollutants. NAM and EUR had the largest emission decreases of 62% and 69% for CO, 36%, 32% for NOx, 
and 67%, 47% for NMVOCs (Figure S2). The overall decline of CO emissions resulted from motor vehicle 
emission controls (Granier et al., 2011; Hoesly et al., 2018), while the NOx decreases were from the imple-
mentation of emission control devices on thermal power plants, the shuttering of inefficient plants, and 
stricter vehicle emission standards in these regions (Duncan et al., 2016; Lamsal et al., 2015). NOx emissions 
in FSU have also decreased by 43%, but CO increased by 52% (Figure S2), largely from residential emissions 
(Hoesly et al., 2018; Popovicheva et al., 2014; also see Figure S4).
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Figure 1. Emission changes from 1980 to 2010 for CO (a, Tg CO), NOx (b, Tg NO2), and NMVOCs (c, Tg NMVOCs), and global tropospheric ozone burden 
changes (d, Tg O3) from global methane increases as well as emission changes from the 10 world regions. NMVOC, non-methane volatile organic compound.
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3.2. Global Tropospheric Ozone Changes

The global BO3 is modeled to have increased 28.1 Tg from 1980 to 2010, with the largest increase from the 
global CH4 increase (7.5 Tg; Figure 1d). Among the 10 regions, the global ΔBO3 is estimated to increase 
most from emission changes in SEA (5.6 Tg), EAS (5.6 Tg), and SAS (4.0 Tg). These three regions together 
accounted for 54% of the global ΔBO3. Emission decreases from NAM and EUR contributed ΔBO3 decreases 
of −2.8 and −1.0 Tg (Figure 1d). Emission changes in FSU also contributed global ΔBO3 decreases (−0.3 Tg), 
mainly caused by the NOx decreases (Figure 1d). Other regions contributed to the global ΔBO3 from negli-
gibly (∼0 Tg from PAN) to considerably (2.5 Tg from CSA). The total global ΔBO3 summed from the global 
CH4 concentration change and the emission changes in the 10 world regions (23.9 Tg) are slightly lower 
than difference between S_2010 and S_1980 (28.1 Tg), mainly because of the nonlinear response of ozone 
to the precursors, but also because we do not account for emission changes over the oceans (Tables S2–S4). 
Although EAS has much larger NOx and NMVOCs increases from 1980 to 2010 than that in SAS and SEA 
(Figure 1), the ΔBO3 are comparable between these three regions, as a result of the large sensitivity of ΔBO3 
to NOx emissions in SAS and SEA (Fry et al., 2012; Naik et al., 2005; West et al., 2009a).

The spatial pattern of the modeled ΔBO3 also suggests a strong influence of emission increases from SEA, 
EAS, and SAS, and decreases from NAM and EUR, and this pattern is consistent with satellite observations 
(Ziemke et al., 2019). The global CH4 concentration increase has contributed more uniformly to the global 
ΔBO3 (Figure 2b), but does not explain the pattern of ΔBO3.
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Figure 2. Spatial distributions for annual ΔBO3 (g/m2) from 1980 to 2010, for (a) total emission changes from 1980 to 2010, (b) global CH4 concentration 
change, and (c)–(l) emission changes in 10 world regions. Note the different colorbar used in panel (a).
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The global zonal ΔBO3 increases are more notable in the NH than that in the Southern Hemisphere ex-
tending from the surface to 100 hPa (Figure 3). The global zonal ΔBO3 increases show a strong influence of 
global CH4, which is more spatially uniform than in the regional scenarios. Emission increases from SEA 
and SAS cause large ozone increases over the tropics, extending to high elevation, which shows the strong 
convection over these regions. This convection lifts ozone precursors to high elevations where they have 
a longer lifetime to form and accumulate ozone, reflecting the higher temperature and strong sunlight in 
these regions (Lawrence et al., 2003; Zhang et al., 2016). Although the tropics have greater water vapor, the 
source of HOx radicals that destroy ozone, less HOx is present at higher elevation, making the ozone lifetime 
longer. In contrast, ozone reductions over NAM and EUR stay at high latitude, with little transport toward 
the equator, and do not reach high altitude. Much of the emissions from EAS are far enough north that they 
are mainly not transported toward the equator, or to high altitude, helping to explain the lower sensitivity 
for emissions from EAS relative to SEA and SAS.

We also analyzed spatial and zonal ΔBO3 in each season (Figures S7–S15). In JJA and SON, there is greater 
sensitivity to emissions from EAS and SAS, as the intertropical convergence zone is further north, and emis-
sions from EAS and SAS are transported more effectively toward the tropics and high elevation. In contrast, 
emissions from SEA do not cause large differences in BO3 in different seasons. NAM and EUR have slightly 
larger ΔBO3 decreases in JJA (Figure S11).

3.3. Comparisons with HTAP2 Sensitivity Experiments

To further investigate the greater sensitivity of ΔBO3 to emissions from tropical and subtropical regions, we 
calculated the global ΔBO3 for regional reductions from the HTAP2 multimodel experiment, which simu-
lated 2010. Previous HTAP2 studies have analyzed regional emission perturbations on surface air quality 
and radiative forcing changes, but here we present ΔBO3 for experiments which simulated 20% reductions 
in all anthropogenic air pollutant emissions globally and from six source regions analyzed here: NAM, 
EUR, SAS, EAS, RBU (here RBU in the HTAP2 experiment equivalent to the FSU region in our study), and 
MDE (Galmarini et al., 2017; Janssens-Maenhout et al., 2015; Stjern et al., 2016). We chose to analyze the 
six CTMs (Table S5) that simulated the base experiment, the global 20% reduction, and the 20% reductions 
from at least four of six regions.

Whereas the HTAP2 experiments reduced emissions of multiple precursors by the same percentage, our 
experiments changed emissions by different percentages for different precursors based on the changes from 
1980 to 2010. To compare the modeled sensitivities, we normalize the global ΔBO3 by the NOx emission 
changes (Tg O3/[Tg N yr−1]), since previous studies found that percent changes in NOx produce greater BO3 
changes compared with CO and NMVOCs (Fry et al., 2012). For HTAP2 experiments, the global ΔBO3 (Fig-
ure S16) is most sensitive to changes in emissions from SAS and MDE (Figure 4). In our experiments, SAS 
and MDE also had the greatest sensitivities of the six regions that HTAP2 studies by perturbing emissions. 
However, we also find that the highest sensitivities occur in three regions that HTAP2 did not simulate, and 
which are mainly in tropical and subtropical regions—SEA (6.1 Tg O3/[Tg N yr−1]), CSA (4.7), and PAN 
(3.7)—and we also show high sensitivity to emissions from AFR. The HTAP2 results for SAS and MDE 
provide supportive evidence for our conclusion of greater sensitivity from tropical and subtropical regions, 
suggesting that future experiments analyzing ozone like HTAP2 should include more regions and give a 
greater priority to studying the impact of emissions from the tropics. From Figure 4, we also see that the 
global ΔBO3 sensitivity to 20% global emission perturbations (GLO) is lower (ensemble mean of 1.5 Tg O3/
[Tg N yr−1]) than that in our study (3.1 Tg O3/[Tg N yr−1]), mostly caused by the different percent changes of 
other air pollutants (CO and NMVOCs), and nonlinear response of O3 at different NOx levels.

4. Conclusions and Discussion
The global ozone burden is modeled to have increased from 1980 to 2010 by 28.1 Tg, with global CH4 con-
centration increases contributing 26.7% of this total (7.5 Tg). Among world regions, emission increases in 
Southeast Asia (5.6 Tg), East Asia (5.6 Tg), and South Asia (4.0 Tg) are most important for the global ozone 
burden, together accounting for 54% of the total change. East Asia has much larger NOx and NMVOCs 
increases from 1980 to 2010 than those in Southeast Asia and South Asia, but the global ozone burden 
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Figure 3. Zonal annual average O3 change (µg/m3) from 1980 to 2010, for (a) total emission changes, (b) global CH4 concentration change, and (c)–(l) emission 
changes in 10 world regions. Note the different colorbar used in panel (a).
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change is comparable between these three regions, as a result of large strong sensitivity of ozone burden 
and convection over these tropical and subtropical regions. The emission reductions in North America and 
Europe contribute to global ozone burden decreases, by 2.8 and 1.0 Tg. We further calculate the sensitivity 
of ΔBO3 to regional emission from the HTAP2 multimodel experiment, which also simulated 2010. From 
HTAP2 experiments, we find that the global ΔBO3 also has large sensitivity to changes in emissions from 
SAS and MDE regions (the HTAP2 experiments did not simulate perturbations from SEA), consistent with 
our findings.

Changes in emissions of NOx, VOCs, and CO affect concentrations of the hydroxyl radical (OH), which is 
the major sink for CH4 (Fiore et al., 2002; Wang & Jacob, 1998; Wild & Prather, 2000). The changes in CH4 
lifetime are important for climate forcing and in turn affect global tropospheric ozone concentration in the 
long-term (West et al., 2007, 2009b; Stevenson et al., 2006, 2013). We did not include this long-term ozone 
influence, since simulations used observed CH4 concentrations in 1980 and 2010. But changes in ozone pre-
cursor emissions from different world regions affected this growth of methane. Future work should consider 
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Figure 4. The sensitivity of global tropospheric ozone burden changes, normalized per unit NOx emissions, to (a) 
regional and global 20% emission reductions in 2010 for all anthropogenic air pollutants from the HTAP2 experiments 
(blue columns are the ensemble mean from the six models), (b) regional and global emission changes from 1980 to 
2010 in all anthropogenic air pollutants simulated in our study (unit of Tg O3/[Tg N yr−1]). Note for the HTAP2 results 
in panel a, the CHASER_t106 and C-IFS_v2 models did not perform the MDE and RBU perturbation experiments, 
and the EMEP_rv48 model did not perform the RBU experiment. In (b), for the GLO (3.1 Tg O3/[Tg N yr−1]) we do not 
consider the BO3 changes caused by CH4 concentration changes from 1980 to 2010 (S_CH4 − S_1980), to compare with 
the HTAP2 results.

(a)

(b)
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incorporating feedback from changes in ozone precursors from different world regions on global methane 
concentration changes, and resulting changes in long-term ozone via changes in OH (West et al., 2009b). 
Here, we investigated the contributions of regional emission changes on the global tropospheric ozone bur-
den. Future work could extend analysis of these simulations to consider effects on ground-level ozone air 
pollution, health impacts, and tropospheric ozone radiative forcing (RF). Unlike the surface ozone response 
which was mostly determined by regional and local emission changes (Liang et al., 2018; also Figure S12a 
in Zhang et al., 2016), changes in ozone radiative forcing may have spatial patterns different from the global 
tropospheric ozone burden, since the ozone RF is also affected by temperature and relative humidity (Fry 
et al., 2012; Kuai et al., 2017). It should be noted that other effects may influence the long-term trends in 
the global tropospheric ozone burden, such as stratosphere-troposphere exchange, interannual-to-decadal 
climatological variations, and natural sources (biogenic), which were not simulated in our study as we focus 
on the effects of anthropogenic emission changes.

We conclude that, in addressing the growing global ozone tropospheric burden, special attention should be 
paid in both research and environmental policy to low latitude regions, such as Southeast Asia and South 
Asia because of the greater sensitivity to emissions. NOx emissions from these two regions increased only 
18% and 33% of the NOx increases in East Asia from 1980 to 2010, but their effects on the global ozone 
burden are comparable. Since 2010, global emissions have continued to evolve, as China is now reducing 
emissions (M. Li et al. 2018, M. Li, Liu, et al., 2017; Zheng, Chevallier et al., 2018; Zheng, Tong et al., 2018). 
However, ozone concentrations have worsened recently in China and it remains an important issue (Lu 
et al., 2018, 2020). Meanwhile, emissions in India and other South Asia regions have continued to grow 
(Koplitz et al., 2017; Kumar et al., 2018; C. Li, McLinden et al., 2017), and emissions from Africa are ex-
pected to accelerate (Liousse et al., 2014). For example, emissions of CO, NOx, and NMVOCs in South Asia 
are projected to increase by 116%, 6%, and 18% in 2050 under the RCP8.5 scenario, and 72%, 4%, and 12% 
under the RCP6.0 scenario, relative to 2,000 (Kumar et al., 2018). Overall, the global shift of emissions to-
ward the equator, where global ozone sensitivity is greater, is expected to continue. More efforts to reduce 
ozone precursor emissions domestically and internationally, including through methane reductions (West 
et al., 2006), are therefore needed to combat ozone as a global issue.

Data Availability Statement
Datasets for the HTAP2 multimodel results used in this research are available through the AeroCom servers 
(http://aerocom.met.no/data.html, accessed July 23, 2020, Labonne et  al.,  2017). The up-to-date IAGOS 
data are publicly available at https://doi.org/10.25326/20 (last accessed September 29, 2020). The simu-
lated monthly mean ozone concentration from all the simulations can be accessed via DOI (https://doi.
org/10.7924/r40p13p11).
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